3.9.21 \(\int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx\) [821]

Optimal. Leaf size=144 \[ \frac {6 B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b d \sqrt {\cos (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {2 B (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^2 d} \]

[Out]

2/5*B*(b*cos(d*x+c))^(3/2)*sin(d*x+c)/b^2/d+2/3*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(si
n(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/d/(b*cos(d*x+c))^(1/2)+2/3*A*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/b/d+6/
5*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)
/b/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {16, 2827, 2715, 2721, 2720, 2719} \begin {gather*} \frac {2 A \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}+\frac {2 A \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 B \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 b^2 d}+\frac {6 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 b d \sqrt {\cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*(A + B*Cos[c + d*x]))/Sqrt[b*Cos[c + d*x]],x]

[Out]

(6*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*b*d*Sqrt[Cos[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*Elli
pticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*A*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(3*b*d) + (2*B*(b*
Cos[c + d*x])^(3/2)*Sin[c + d*x])/(5*b^2*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rubi steps

\begin {align*} \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{\sqrt {b \cos (c+d x)}} \, dx &=\frac {\int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx}{b^2}\\ &=\frac {A \int (b \cos (c+d x))^{3/2} \, dx}{b^2}+\frac {B \int (b \cos (c+d x))^{5/2} \, dx}{b^3}\\ &=\frac {2 A \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {2 B (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^2 d}+\frac {1}{3} A \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx+\frac {(3 B) \int \sqrt {b \cos (c+d x)} \, dx}{5 b}\\ &=\frac {2 A \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {2 B (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^2 d}+\frac {\left (A \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 \sqrt {b \cos (c+d x)}}+\frac {\left (3 B \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 b \sqrt {\cos (c+d x)}}\\ &=\frac {6 B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b d \sqrt {\cos (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 b d}+\frac {2 B (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 88, normalized size = 0.61 \begin {gather*} \frac {2 \sqrt {\cos (c+d x)} \left (9 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 A F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\sqrt {\cos (c+d x)} (5 A+3 B \cos (c+d x)) \sin (c+d x)\right )}{15 d \sqrt {b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*(A + B*Cos[c + d*x]))/Sqrt[b*Cos[c + d*x]],x]

[Out]

(2*Sqrt[Cos[c + d*x]]*(9*B*EllipticE[(c + d*x)/2, 2] + 5*A*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*(5*A
 + 3*B*Cos[c + d*x])*Sin[c + d*x]))/(15*d*Sqrt[b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.26, size = 270, normalized size = 1.88

method result size
default \(-\frac {2 \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-24 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (20 A +24 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-10 A -6 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}\) \(270\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/15*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6
+(20*A+24*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-10*A-6*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*A*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9*B*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d
*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^2/sqrt(b*cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 154, normalized size = 1.07 \begin {gather*} \frac {-5 i \, \sqrt {2} A \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} A \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 9 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 i \, \sqrt {2} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, B \cos \left (d x + c\right ) + 5 \, A\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/15*(-5*I*sqrt(2)*A*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*A*sqrt(b)
*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 9*I*sqrt(2)*B*sqrt(b)*weierstrassZeta(-4, 0, weie
rstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 9*I*sqrt(2)*B*sqrt(b)*weierstrassZeta(-4, 0, weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*B*cos(d*x + c) + 5*A)*sqrt(b*cos(d*x + c))*sin(d*x +
 c))/(b*d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(A+B*cos(d*x+c))/(b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^2/sqrt(b*cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^2\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{\sqrt {b\,\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^2*(A + B*cos(c + d*x)))/(b*cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^2*(A + B*cos(c + d*x)))/(b*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________